| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 |
- import os
- import re
- from openai import OpenAI
- from dotenv import load_dotenv
- import requests
- from bs4 import BeautifulSoup
- import json
- import argparse
- from rich.console import Console
- from rich.markdown import Markdown
- from multiprocessing import Pool
- import multiprocessing as mp
- def duckduckgo_search(query, num_results=5):
- # Construct the DuckDuckGo URL for the search query
- url = f"https://html.duckduckgo.com/html/?q={query}"
- # Send a GET request to the DuckDuckGo search page
- headers = {
- 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
- }
- response = requests.get(url, headers=headers)
- # Check if the request was successful
- if response.status_code != 200:
- print(
- f"Failed to retrieve search results. Status code: {response.status_code}")
- return []
- # Parse the HTML content using BeautifulSoup
- soup = BeautifulSoup(response.content, 'html.parser')
- # Find all result links (assuming they are in <a> tags with class "result__a")
- result_links = []
- for a_tag in soup.find_all('a', class_='result__a'):
- link = a_tag.get('href')
- if link:
- result_links.append(link)
- if len(result_links) >= num_results:
- break
- return result_links
- def extract_text_from_links(links, timeout=5) -> list[tuple[str, str]]:
- extracted_texts = []
- headers = {
- 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
- }
- for link in links:
- try:
- response = requests.get(link, headers=headers, timeout=timeout)
- if response.status_code == 200:
- soup = BeautifulSoup(response.content, 'html.parser')
- # Extract text from the page
- text = soup.get_text(separator='\n', strip=True)
- extracted_texts.append((link, text))
- else:
- print(
- f"Failed to retrieve content from {link}. Status code: {response.status_code}")
- except requests.RequestException as e:
- print(f"An error occurred while fetching {link}: {e}")
- return extracted_texts
- def remove_tags(text):
- # Regular expression pattern to match '<think>' tags and their contents
- pattern = r'<think>[\s\S]*?<\/think>\n\n'
- # Replace all matches with an empty string
- result = re.sub(pattern, '', text)
- return result
- def process_url(args):
- "Helper function to summarize one individual source"
- url, text, query, model, api_base, token = args
-
- client = OpenAI(
- base_url=api_base,
- api_key=token
- )
- prompt = f"""You are an expert summarizer. Your task is to evaluate which parts if any of the
- following document are relevant to the user's query. Summarize the relevant parts of the given text with regards to the original query: '{query}'\
- and include the full URLs as references where appropriate. Leave out everything that has little or no relevance to the query. If the text does not
- contain relevant information just return an empty response.
- \n\n{text}"""
- history = [{"role": "user", "content": prompt}]
- try:
- response = client.chat.completions.create(
- model=model,
- messages=history,
- temperature=0,
- max_tokens=1000
- ).choices.pop().message.content
- return (url, remove_tags(response))
- except requests.RequestException as e:
- print(
- f"An error occurred at summarization for {url}: {e}"
- )
- return (url, "") # Return empty string on error
- def summarize_individual_texts(texts_and_urls, query, model, api_base, token):
- # Generate text summaries in parallel using multiprocessing
- args_list = [(url, text, query, model, api_base, token) for url, text in texts_and_urls]
-
- # Get number of CPUs to use
- num_processes = mp.cpu_count()
- # Create a process pool and process URLs in parallel
- with Pool(processes=num_processes) as pool:
- summaries = pool.map(process_url, args_list)
-
- return summaries
- def summarize(texts_and_urls, query, model, api_base, token):
- # Prepare the context and prompt
- context = "\n".join(
- [f"URL: {url}\nText: {text}" for url, text in texts_and_urls])
- prompt = f"""You are an expert summarizer. Your task is to evaluate which parts if any of the
- following document are relevant to the user's query. Summarize the relevant parts of the given text with regards to the original query: '{query}' \
- and include the full URLs as references where appropriate. Use markdown to format your response. Add unicode characters where it makes sense to make the summary colorful. \
- \n\n{context}"""
- client = OpenAI(
- base_url=api_base,
- api_key=token
- )
- history = [{"role": "user", "content": prompt}]
- try:
- response = client.chat.completions.create(
- model=model,
- messages=history,
- temperature=0,
- max_tokens=2000
- ).choices.pop().message.content
- return remove_tags(response)
- except requests.RequestException as e:
- print(
- f"An error occurred at summarization for {url}: {e}"
- )
- def optimize_search_query(query, query_model, api_base):
- # Prepare the prompt for optimizing the search query
- prompt = f"Optimize the following natural language query to improve its effectiveness in a web search.\
- Make it very concise. Return only the optimized query text no additional texts, quotations or thoughts. Query: '{query}'"
- # Create the payload for the POST request
- payload = {
- "model": query_model,
- "prompt": prompt,
- "stream": False,
- "max_tokens": 50
- }
- # Send the POST request to the server
- try:
- print("Optimizing search query")
- response = requests.post(api_base, json=payload)
- if response.status_code == 200:
- result = json.loads(response.text)
- return (result["choices"][0]["text"].strip())
- else:
- print(
- f"Failed to optimize search query from the server. Status code: {response.status_code}")
- return query
- except requests.RequestException as e:
- print(
- f"An error occurred while sending request to the server for optimizing the search query: {e}")
- return query
- def pretty_print_markdown(markdown_text):
- console = Console()
- md = Markdown(markdown_text)
- console.print(md)
- if __name__ == "__main__":
- load_dotenv()
- token = os.getenv("OVH_AI_ENDPOINTS_ACCESS_TOKEN")
- # Set up argument parser
- parser = argparse.ArgumentParser(
- description="Search DuckDuckGo, extract text from results, and summarize with LLM.")
- parser.add_argument("query", type=str,
- help="The search query to use on DuckDuckGo")
- parser.add_argument("--num_results", type=int, default=5,
- help="Number of search results to process (default: 5)")
- # Parse arguments
- args = parser.parse_args()
- api_base = "https://oai.endpoints.kepler.ai.cloud.ovh.net/v1/"
- original_query = args.query
- summary_model = "Qwen3-32B"
- print(f"Query: {original_query}")
- n = args.num_results # Number of results to extract
- links = duckduckgo_search(original_query, n)
- print(f"Top {n} search results:")
- for i, link in enumerate(links, start=1):
- print(f"{i}. {link}")
- texts_and_urls = extract_text_from_links(links)
- print("Summarizing individual search results")
- intermediate_summaries = summarize_individual_texts(
- texts_and_urls,
- original_query,
- summary_model,
- api_base,
- token
- )
- final_summary = summarize(
- intermediate_summaries,
- original_query,
- summary_model,
- api_base,
- token)
- if final_summary:
- print("\n################################# Final Summary of search results ################################# \n")
- pretty_print_markdown(final_summary)
|