main.py 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182
  1. import requests
  2. from bs4 import BeautifulSoup
  3. import json
  4. import argparse
  5. from rich.console import Console
  6. from rich.markdown import Markdown
  7. def duckduckgo_search(query, num_results=5):
  8. # Construct the DuckDuckGo URL for the search query
  9. url = f"https://html.duckduckgo.com/html/?q={query}"
  10. # Send a GET request to the DuckDuckGo search page
  11. headers = {
  12. 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
  13. }
  14. response = requests.get(url, headers=headers)
  15. # Check if the request was successful
  16. if response.status_code != 200:
  17. print(f"Failed to retrieve search results. Status code: {response.status_code}")
  18. return []
  19. # Parse the HTML content using BeautifulSoup
  20. soup = BeautifulSoup(response.content, 'html.parser')
  21. # Find all result links (assuming they are in <a> tags with class "result__a")
  22. result_links = []
  23. for a_tag in soup.find_all('a', class_='result__a'):
  24. link = a_tag.get('href')
  25. if link:
  26. result_links.append(link)
  27. if len(result_links) >= num_results:
  28. break
  29. return result_links
  30. def extract_text_from_links(links, timeout=5):
  31. extracted_texts = []
  32. headers = {
  33. 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
  34. }
  35. for link in links:
  36. print("downloading text from: " + link)
  37. try:
  38. response = requests.get(link, headers=headers, timeout=timeout)
  39. if response.status_code == 200:
  40. soup = BeautifulSoup(response.content, 'html.parser')
  41. # Extract text from the page
  42. text = soup.get_text(separator='\n', strip=True)
  43. extracted_texts.append((link, text))
  44. else:
  45. print(f"Failed to retrieve content from {link}. Status code: {response.status_code}")
  46. except requests.RequestException as e:
  47. print(f"An error occurred while fetching {link}: {e}")
  48. return extracted_texts
  49. def summarize_individual_texts(texts_and_urls, query, ollama_url="http://localhost:11434/api/generate"):
  50. summaries = []
  51. for url, text in texts_and_urls:
  52. prompt = f"Extract the relevant information from the following text with regards to the original \
  53. query: '{query}'\n\n{text}\n"
  54. payload = {
  55. "model": "command-r",
  56. "prompt": prompt,
  57. "stream": False,
  58. "max_tokens": 1000
  59. }
  60. try:
  61. response = requests.post(ollama_url, json=payload)
  62. if response.status_code == 200:
  63. result = json.loads(response.text)["response"]
  64. summaries.append((url, result))
  65. else:
  66. print(f"Failed to get summary from Ollama server for {url}. Status code: {response.status_code}")
  67. except requests.RequestException as e:
  68. print(f"An error occurred while sending request to Ollama server for {url}: {e}")
  69. return summaries
  70. def summarize_with_ollama(texts_and_urls, query, ollama_url="http://localhost:11434/api/generate"):
  71. # Prepare the context and prompt
  72. context = "\n".join([f"URL: {url}\nText: {text}" for url, text in texts_and_urls])
  73. prompt = f"Summarize the following search results with regards to the original query: '{query}' \
  74. and include the full URLs as references where appropriate. Use markdown to format your response and unicode characters. \
  75. \n\n{context}"
  76. # Create the payload for the POST request
  77. payload = {
  78. "model": "command-r",
  79. "prompt": prompt,
  80. "stream": False,
  81. "max_tokens": 1500
  82. }
  83. # Send the POST request to the Ollama server
  84. try:
  85. print("Processing")
  86. response = requests.post(ollama_url, json=payload)
  87. if response.status_code == 200:
  88. result = json.loads(response.text)["response"]
  89. return result
  90. else:
  91. print(f"Failed to get summary from Ollama server. Status code: {response.status_code}")
  92. return None
  93. except requests.RequestException as e:
  94. print(f"An error occurred while sending request to Ollama server: {e}")
  95. return None
  96. def optimize_search_query(query, ollama_url="http://localhost:11434/api/generate"):
  97. # Prepare the prompt for optimizing the search query
  98. prompt = f"Optimize the following natural language query to improve its effectiveness in a web search.\
  99. Make it very concise. query: '{query}'"
  100. # Create the payload for the POST request
  101. payload = {
  102. "model": "command-r",
  103. "prompt": prompt,
  104. "stream": False,
  105. "max_tokens": 50
  106. }
  107. # Send the POST request to the Ollama server
  108. try:
  109. print("Optimizing search query")
  110. response = requests.post(ollama_url, json=payload)
  111. if response.status_code == 200:
  112. result = json.loads(response.text)["response"].strip()
  113. return result.strip('"')
  114. else:
  115. print(f"Failed to optimize search query from Ollama server. Status code: {response.status_code}")
  116. return query
  117. except requests.RequestException as e:
  118. print(f"An error occurred while sending request to Ollama server for optimizing the search query: {e}")
  119. return query
  120. def pretty_print_markdown(markdown_text):
  121. console = Console()
  122. md = Markdown(markdown_text)
  123. console.print(md)
  124. if __name__ == "__main__":
  125. # Set up argument parser
  126. parser = argparse.ArgumentParser(description="Search DuckDuckGo, extract text from results, and summarize with Ollama.")
  127. parser.add_argument("query", type=str, help="The search query to use on DuckDuckGo")
  128. parser.add_argument("--num_results", type=int, default=5, help="Number of search results to process (default: 5)")
  129. # Parse arguments
  130. args = parser.parse_args()
  131. original_query = args.query
  132. # Optimize the search query
  133. optimized_query = optimize_search_query(original_query)
  134. print(f"Original Query: {original_query}")
  135. print(f"Optimized Query: {optimized_query}")
  136. n = args.num_results # Number of results to extract
  137. links = duckduckgo_search(optimized_query, n)
  138. print(f"Top {n} search results:")
  139. for i, link in enumerate(links, start=1):
  140. print(f"{i}. {link}")
  141. texts_and_urls = extract_text_from_links(links)
  142. print("Summarizing individual search results")
  143. intermediate_summaries = summarize_individual_texts(texts_and_urls, original_query)
  144. final_summary = summarize_with_ollama(intermediate_summaries, original_query)
  145. if final_summary:
  146. print("\nFinal Summary of search results:\n")
  147. pretty_print_markdown(final_summary)