|
|
@@ -1,236 +0,0 @@
|
|
|
-import os
|
|
|
-import re
|
|
|
-from openai import OpenAI
|
|
|
-from dotenv import load_dotenv
|
|
|
-import requests
|
|
|
-from bs4 import BeautifulSoup
|
|
|
-import json
|
|
|
-import argparse
|
|
|
-from rich.console import Console
|
|
|
-from rich.markdown import Markdown
|
|
|
-from multiprocessing import Pool
|
|
|
-import multiprocessing as mp
|
|
|
-
|
|
|
-
|
|
|
-def duckduckgo_search(query, num_results=5):
|
|
|
- # Construct the DuckDuckGo URL for the search query
|
|
|
- url = f"https://html.duckduckgo.com/html/?q={query}"
|
|
|
-
|
|
|
- # Send a GET request to the DuckDuckGo search page
|
|
|
- headers = {
|
|
|
- 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
|
|
|
- }
|
|
|
-
|
|
|
- response = requests.get(url, headers=headers)
|
|
|
-
|
|
|
- # Check if the request was successful
|
|
|
- if response.status_code != 200:
|
|
|
- print(
|
|
|
- f"Failed to retrieve search results. Status code: {response.status_code}")
|
|
|
- return []
|
|
|
-
|
|
|
- # Parse the HTML content using BeautifulSoup
|
|
|
- soup = BeautifulSoup(response.content, 'html.parser')
|
|
|
-
|
|
|
- # Find all result links (assuming they are in <a> tags with class "result__a")
|
|
|
- result_links = []
|
|
|
- for a_tag in soup.find_all('a', class_='result__a'):
|
|
|
- link = a_tag.get('href')
|
|
|
- if link:
|
|
|
- result_links.append(link)
|
|
|
- if len(result_links) >= num_results:
|
|
|
- break
|
|
|
-
|
|
|
- return result_links
|
|
|
-
|
|
|
-
|
|
|
-def extract_text_from_links(links, timeout=5) -> list[tuple[str, str]]:
|
|
|
- extracted_texts = []
|
|
|
- headers = {
|
|
|
- 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
|
|
|
- }
|
|
|
-
|
|
|
- for link in links:
|
|
|
- try:
|
|
|
- response = requests.get(link, headers=headers, timeout=timeout)
|
|
|
- if response.status_code == 200:
|
|
|
- soup = BeautifulSoup(response.content, 'html.parser')
|
|
|
- # Extract text from the page
|
|
|
- text = soup.get_text(separator='\n', strip=True)
|
|
|
- extracted_texts.append((link, text))
|
|
|
- else:
|
|
|
- print(
|
|
|
- f"Failed to retrieve content from {link}. Status code: {response.status_code}")
|
|
|
- except requests.RequestException as e:
|
|
|
- print(f"An error occurred while fetching {link}: {e}")
|
|
|
-
|
|
|
- return extracted_texts
|
|
|
-
|
|
|
-def remove_tags(text):
|
|
|
- # Regular expression pattern to match '<think>' tags and their contents
|
|
|
- pattern = r'<think>[\s\S]*?<\/think>\n\n'
|
|
|
- # Replace all matches with an empty string
|
|
|
- result = re.sub(pattern, '', text)
|
|
|
- return result
|
|
|
-
|
|
|
-def process_url(args):
|
|
|
- "Helper function to summarize one individual source"
|
|
|
- url, text, query, model, api_base, token = args
|
|
|
-
|
|
|
- client = OpenAI(
|
|
|
- base_url=api_base,
|
|
|
- api_key=token
|
|
|
- )
|
|
|
-
|
|
|
- prompt = f"""You are an expert summarizer. Your task is to evaluate which parts if any of the
|
|
|
- following document are relevant to the user's query. Summarize the relevant parts of the given text with regards to the original query: '{query}'\
|
|
|
- and include the full URLs as references where appropriate. Leave out everything that has little or no relevance to the query. If the text does not
|
|
|
- contain relevant information just return an empty response.
|
|
|
- \n\n{text}"""
|
|
|
-
|
|
|
- history = [{"role": "user", "content": prompt}]
|
|
|
-
|
|
|
- try:
|
|
|
- response = client.chat.completions.create(
|
|
|
- model=model,
|
|
|
- messages=history,
|
|
|
- temperature=0,
|
|
|
- max_tokens=1000
|
|
|
- ).choices.pop().message.content
|
|
|
- return (url, remove_tags(response))
|
|
|
- except Exception as e:
|
|
|
- print(
|
|
|
- f"An error occurred at summarization for {url}: {e}"
|
|
|
- )
|
|
|
- return (url, "") # Return empty string on error
|
|
|
-
|
|
|
-
|
|
|
-def summarize_individual_texts(texts_and_urls, query, model, api_base, token):
|
|
|
- # Generate text summaries in parallel using multiprocessing
|
|
|
- args_list = [(url, text, query, model, api_base, token) for url, text in texts_and_urls]
|
|
|
-
|
|
|
- # Get number of CPUs to use
|
|
|
- num_processes = mp.cpu_count()
|
|
|
-
|
|
|
- # Create a process pool and process URLs in parallel
|
|
|
- with Pool(processes=num_processes) as pool:
|
|
|
- summaries = pool.map(process_url, args_list)
|
|
|
-
|
|
|
- return summaries
|
|
|
-
|
|
|
-
|
|
|
-def summarize(texts_and_urls, query, model, api_base, token):
|
|
|
- # Prepare the context and prompt
|
|
|
- context = "\n".join(
|
|
|
- [f"URL: {url}\nText: {text}" for url, text in texts_and_urls])
|
|
|
- prompt = f"""You are an expert summarizer. Your task is to evaluate which parts if any of the
|
|
|
- following document are relevant to the user's query. Summarize the relevant parts of the given text with regards to the original query: '{query}' \
|
|
|
- and include the full URLs as references where appropriate. Use markdown to format your response. Add unicode characters where it makes sense to make the summary colorful. \
|
|
|
- \n\n{context}"""
|
|
|
-
|
|
|
- client = OpenAI(
|
|
|
- base_url=api_base,
|
|
|
- api_key=token
|
|
|
- )
|
|
|
-
|
|
|
- history = [{"role": "user", "content": prompt}]
|
|
|
-
|
|
|
- try:
|
|
|
- response = client.chat.completions.create(
|
|
|
- model=model,
|
|
|
- messages=history,
|
|
|
- temperature=0,
|
|
|
- max_tokens=2000
|
|
|
- ).choices.pop().message.content
|
|
|
- return remove_tags(response)
|
|
|
- except Exception as e:
|
|
|
- print(
|
|
|
- f"An error occurred at summarization for {url}: {e}"
|
|
|
- )
|
|
|
-
|
|
|
-
|
|
|
-def optimize_search_query(query, query_model, api_base):
|
|
|
- # Prepare the prompt for optimizing the search query
|
|
|
- prompt = f"Optimize the following natural language query to improve its effectiveness in a web search.\
|
|
|
- Make it very concise. Return only exactly the optimized query text no additional texts, quotations or thoughts. Query: '{query}'"
|
|
|
-
|
|
|
- # Create the payload for the POST request
|
|
|
- payload = {
|
|
|
- "model": query_model,
|
|
|
- "prompt": prompt,
|
|
|
- "stream": False,
|
|
|
- "max_tokens": 50
|
|
|
- }
|
|
|
-
|
|
|
- # Send the POST request to the server
|
|
|
- try:
|
|
|
- print("Optimizing search query")
|
|
|
- response = requests.post(api_base, json=payload)
|
|
|
- if response.status_code == 200:
|
|
|
- result = json.loads(response.text)
|
|
|
- return (result["choices"][0]["text"].strip())
|
|
|
- else:
|
|
|
- print(
|
|
|
- f"Failed to optimize search query from the server. Status code: {response.status_code}")
|
|
|
- return query
|
|
|
- except Exception as e:
|
|
|
- print(
|
|
|
- f"An error occurred while sending request to the server for optimizing the search query: {e}")
|
|
|
- return query
|
|
|
-
|
|
|
-
|
|
|
-def pretty_print_markdown(markdown_text):
|
|
|
- console = Console()
|
|
|
- md = Markdown(markdown_text)
|
|
|
- console.print(md)
|
|
|
-
|
|
|
-
|
|
|
-if __name__ == "__main__":
|
|
|
- load_dotenv()
|
|
|
- token = os.getenv("OVH_AI_ENDPOINTS_ACCESS_TOKEN")
|
|
|
- api_base = os.getenv("API_BASE")
|
|
|
- summary_model = os.getenv("SUMMARY_MODEL")
|
|
|
-
|
|
|
- # Set up argument parser
|
|
|
- parser = argparse.ArgumentParser(
|
|
|
- description="Search DuckDuckGo, extract text from results, and summarize with LLM.")
|
|
|
- parser.add_argument("query", type=str,
|
|
|
- help="The search query to use on DuckDuckGo")
|
|
|
- parser.add_argument("--num_results", type=int, default=5,
|
|
|
- help="Number of search results to process (default: 5)")
|
|
|
-
|
|
|
- # Parse arguments
|
|
|
- args = parser.parse_args()
|
|
|
-
|
|
|
-
|
|
|
- original_query = args.query
|
|
|
-
|
|
|
- print(f"Query: {original_query}")
|
|
|
-
|
|
|
- n = args.num_results # Number of results to extract
|
|
|
- links = duckduckgo_search(original_query, n)
|
|
|
-
|
|
|
- print(f"Top {n} search results:")
|
|
|
- for i, link in enumerate(links, start=1):
|
|
|
- print(f"{i}. {link}")
|
|
|
-
|
|
|
- texts_and_urls = extract_text_from_links(links)
|
|
|
-
|
|
|
- print("Summarizing individual search results")
|
|
|
- intermediate_summaries = summarize_individual_texts(
|
|
|
- texts_and_urls,
|
|
|
- original_query,
|
|
|
- summary_model,
|
|
|
- api_base,
|
|
|
- token
|
|
|
- )
|
|
|
-
|
|
|
- final_summary = summarize(
|
|
|
- intermediate_summaries,
|
|
|
- original_query,
|
|
|
- summary_model,
|
|
|
- api_base,
|
|
|
- token)
|
|
|
-
|
|
|
- if final_summary:
|
|
|
- pretty_print_markdown(final_summary)
|